Fusion of MODIS and Landsat-8 Surface Temperature Images: A New Approach
نویسندگان
چکیده
Here, our objective was to develop a spatio-temporal image fusion model (STI-FM) for enhancing temporal resolution of Landsat-8 land surface temperature (LST) images by fusing LST images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS); and implement the developed algorithm over a heterogeneous semi-arid study area in Jordan, Middle East. The STI-FM technique consisted of two major components: (i) establishing a linear relationship between two consecutive MODIS 8-day composite LST images acquired at time 1 and time 2; and (ii) utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat-8 LST image at time 2. It revealed that strong linear relationships (i.e., r2, slopes, and intercepts were in the range 0.93-0.94, 0.94-0.99; and 2.97-20.07) existed between the two consecutive MODIS LST images. We evaluated the synthetic LST images qualitatively and found high visual agreements with the actual Landsat-8 LST images. In addition, we conducted quantitative evaluations of these synthetic images; and found strong agreements with the actual Landsat-8 LST images. For example, r2, root mean square error (RMSE), and absolute average difference (AAD)-values were in the ranges 084-0.90, 0.061-0.080, and 0.003-0.004, respectively.
منابع مشابه
Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm
As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST) retrieved from Thermal Infra-Red (TIR) images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, ...
متن کاملDownscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches
This study presented a MODIS 8-day 1 km evapotranspiration (ET) downscaling method based on Landsat 8 data (30 m) and machine learning approaches. Eleven indicators including albedo, land surface temperature (LST), and vegetation indices (VIs) derived from Landsat 8 data were first upscaled to 1 km resolution. Machine learning algorithms including Support Vector Regression (SVR), Cubist, and Ra...
متن کاملSpatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images
Our aim was to evaluate a spatiotemporal image-fusion model (STI-FM) for enhancing the temporal resolution (i.e., from 16 to 8 days) of Landsat-8 surface reflectance images by utilizing the moderate-resolution imaging spectroradiometer (MODIS) images, and assess its applicability over a heterogeneous agriculture dominant semiarid region in Jordan. Our proposed model had two major components: (i...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملEvaluation of ASTER-Like Daily Land Surface Temperature by Fusing ASTER and MODIS Data during the HiWATER-MUSOEXE
Land surface temperature (LST) is an important parameter that is highly responsive to surface energy fluxes and has become valuable to many disciplines. However, it is difficult to acquire satellite LSTs with both high spatial and temporal resolutions due to tradeoffs between them. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of thermal i...
متن کامل